Everyday Everywhere

Large Capacity PFC Catalytic Abatement

10 Re-Use Technology

Everyday Everywhere

This document is the property of ECOPRO HN and information contained is confidential. Nor used or disclosed for any purpose other than that for which it is specifically furnished without prior written approval of ECOPRO HN.

CONFIDENTIAL

6 Major GHG	CO ₂	CH ₄	N ₂ O	HFCs	PFCs	SF ₆
Sources of Emission	Fuel use	Waste, Agriculture, Landfill	Fertilizer use, Nitric acid, Caprolactam	Refrigerant, Foaming agent	Semiconductor manufacturing	LCD Electrical insulator
GWP	1	21	310	140 ~ 11,700	6,500 ~ 9,200	23,900
Green House Effect(%)	55	15	6		24	

* Global Warming Potential

GWP is a measure of how much heat a greenhouse gas traps in the atmosphere up to a specific time horizon, relative to carbon dioxide. It compares the amount of heat trapped by a certain mass of the gas in question to the amount of heat trapped by a similar mass of carbon dioxide and is expressed as a factor of carbon dioxide (whose GWP is standardized to 1.

ECOPTO HN

2. Gas Flow Process Diagram

BEFORE

NEW

RCS System : 5 CMM

ЕсоРго ни

Gas Flow Process Diagram

Roof-Top

BEFORE

NEW

RCS System : 25 cmm - 200 cmm

3. Technical Overview

 RCS(Regenerative Catalyst Oxidation is a technology jointly developed by Samsung Engineering and EcoProHN

① Pre-Wet SCR	② RCS	③ Post-Wet SCR	④ ID Fan
Catalytic poisoning Removal (HF, Cl_Gas, Dust, etc.)	CF ₄ , SF ₆ etc PFCs Gas decomposition Eff. : 95% based on CF ₄ Operation Temp. : 780℃	Treatment of by-product of PFCs (HF, SOx, etc.)	Maintain Process flow and static pressure

Everyday Everywhere

Consist of RCS and Function

Name	Description		
① Catalyst	Catalytic reaction degrades PFCs GAS decomposition temperature Over 1300℃ ► Over 700℃ (Energy Saving)√		
② Heat Sink Material	PFCs gas recovers high-temperature heat after passing through catalyst ,so that saving operating costs even at high temperatures Heat recovery efficiency 95% ↑ (Energy conservation) ✓		
③ Refractory Material	Uses special refractory materials with high corrosion resistance against PFC and HF		
④ Casing	Application of strong corrosion resistant material Casing to HF		
⑤ In/Out Damper	Poppet type damper with the best durability applied for periodic switching operation		

CONFIDENTIA

- ① Input process gas (25 °C~30 °C)
- ② It absorbs heat at almost the decomposition temperature level (over 700℃)
- **③ PFC** gas is decomposed by passing through catalyst layer
- ④ And then, the PFC gas of high temperature release hot heats to the HSM.
 - That is the Heat recovery technology.
 - (In other words, Heat regenerator is recovered thereby the HSM absorbs the hot heats.)
- (5) Exhaust gas (high temperature : $60 \sim 70 \degree$ C) is higher than the input gas.

Thus, the heat recovery rate is about 95%.

Everyday Everywhere

Differences from Existing Technologies

List	Plasma / Burn / Electric Heat	Central RCS
Characteristic	 Degradation of greenhouse gases at high temperature above 1,300 ℃ 	 Degradation of greenhouse gases at high temperature above 700 °C
MAJOR DIFFERENCE	 High Operation Cost & BUSY on Layout Space Excessive Energy Consumption Maintenance and fire hazard > 	 Low operation cost (Amount of energy generated ↘) Implemented large capacity integrated processing on the 1) Rooftop & Ground for >25cmm 2) Sub-Fab for 5cmm NOx Emission minimized Much less risk on fire hazard Available for RCS installing at Existing FAB run for 24 hours w/o stopping operation

7. Performance (Lab. Data)

Everyday Everywhere

1. Possibility and Effectives on RCS treatment 2. Field Data for 1 year

Design Parameter	Possibilities for treatment via RCS	Effects to RCS	
HF, Cl ₂	X	Removed in both Pre and Post Scrubber	
BCl ₃ , HBr	X	Catalyst performance degradation Removed in Pre Scrubber	
CF ₄	0		
C-F compoun ds*	0		
SF ₆	0		
NF ₃	0	NOx occurs	
CO	0		
Sulfur compounds (COS, SO ₂)	0	Catalyst performance degradation	
Silica compounds (SiCl ₄) Tungsten compounds (WF ₆)	x	Catalyst performance degradation Removed in Pre Scrubber (Silica compound)	
O ₂	X	X	
Inert Gas (Ar, Kr, Xe, CO ₂ ,)	X	X	
NH ₃ , C ₂ H ₄	X	Available for pyrolysis at 700°C~800°C	
H_2, CH_4, H_2N_2	X		

Everyday Everywhere

9. PFC Catalyst (Next Generation)

Everyday Everywhere EcoPro HN

PFC Catalyst

Catalyst R&D Organization

Catalyst R&D Organization

GHG Catalyst Specialized Team Organization

- ◎ Catalyst R&D Team
 - : Focus on developing GHG catalysts for 100% DRE
- **O PFC Catalysts**
 - : 6 specialists with other 7 GHG researchers

Everyday Everywhere ECOPro HN

History of PFC Catalysts

Core value of PFC catalyst: From catalyst itself to integrated system (Cat. + Sys.)

* Target DRE at 750°C

Everyday Everywhere ECOPro HN

CONFIDENTIAL

Everyday Everywhere

3rd GEN PFC Catalyst Performance

3rd GEN PFC Catalyst Performance

Enhancement of CF₄ DRE & pressure drop

Comparison 2nd GEN Perforate with 3rd GEN Honeycomb

Everyday Everywhere ECOPro HN

Everyday Everywhere

3rd GEN PFC Catalyst Performance

Estimate 6 month lifetime longer than 2nd GEN

Estimate 3rd GEN honeycomb lifetime based on the field data

			A NULL LATEN
Es	stimate a decay rate fo	r 2nd GEN PFC catalyst (F	Perforate)
PFC Catalyst	Initial CF₄ DRE (%)	Guarantee CF ₄ DRE (%)	Decay rate (%/month)
Field data	99	이 뒤 볼 90	0.75%▼/MON.
Times	Esti	mate lifetime	<u>Ne 000 25</u>
PFC Catalyst	Initial CF4 DRE (%)	Guarantee CF4 DRE (%)	Lifetime (month)
2nd GEN	99.0	90	12
3rd GEN	99.8	90	18 (6 MON. 🔺)
NOTE	* Lifetime is changed depending on gas condition.		

> When applying 3rd GEN PFC catalyst, extend ~6 months lifetime

Everyday Everywhere

Compare ECOPRO HN vs. Competitor

CF₄ DRE (%) for ECOPRO HN & Competitor

Everyday Everywhere EcoPro HN

Everyday Everywhere

Evaluation of PFC Catalysts

Catalyst Evaluation System for achieving PFC 100% DRE

DRE Evaluation Testing for PFC Catalysts **Pressure Drop Micro-Reactor Bench-scale Reactor Pilot-scale Reactor Bench-scale** 0.06 m³/h 0.1 m³/h 1 m³/h Applied Vol. = 5L 10 units 2 units 2 units 1 unit

Everyday Everywhere ECOPro HN

Everyday Everywhere

Characterization of PFC Catalysts

Various analytical instruments

Everyday Everywhere EcoPro HN

Everyday Everywhere

10. WASTE < Catalyst / Heat Sink Material > RE–USE TECHNOLOGY EcoProm

Major Application ECOPROHN is working on

Customer

Additive

Al2O3 Cement

Excellent heat resistance and high early strength

Calcium aluminate cement is inorganic binder that is resistant around 1400 ~ 1800°C for refining, smelling as well as fabricating and casting. And after construction, it hardens fast and makes available to demold in a day. Therefore, it is applied to facilities of not only heavy & chemical industry, but also boiler, incinerator etc. that claim high temperature conditions.

Heavy Chemical Industry, Incinerator Etc

Everyday Everywhere

EcoPro hn

